Graphene as a photothermal switch for controlled drug release.
نویسندگان
چکیده
Graphene has recently emerged as a novel material in the biomedical field owing to its optical properties, biocompatibility, large specific surface area and low cost. In this paper, we provide the first demonstration of the possibility of using light to remotely trigger the release of drugs from graphene in a highly controlled manner. Different drugs including chemotherapeutics and proteins are firmly adsorbed onto reduced graphene oxide (rGO) nanosheets dispersed in a biopolymer film and then released by individual millisecond-long light pulses generated by a near infrared (NIR) laser. Here graphene plays the dual role of a versatile substrate for temporary storage of drugs and an effective transducer of NIR-light into heat. Drug release appears to be narrowly confined within the size of the laser spot under noninvasive conditions and can be precisely dosed depending on the number of pulses. The approach proposed paves the way for tailor-made pharmacological treatments of chronic diseases, including cancer, anaemia and diabetes.
منابع مشابه
The enhanced photothermal effect of graphene/conjugated polymer composites: photoinduced energy transfer and applications in photocontrolled switches.
Composites prepared by grafting poly(3-hexylthiophene) (P3HT) onto the surfaces of reduced graphene oxide (RGO) (RGO-g-P3HT) exhibit an enhanced photothermal effect due to photoinduced energy transfer from P3HT to RGO. A remote photo-controlled electrical switch was prepared using RGO-g-P3HT as a photothermal layer.
متن کاملMesoporous Carbon Nanospheres as a Multifunctional Carrier for Cancer Theranostics
Optical nanomaterials with intense absorption in near-infrared (NIR) region hold great promise for biomedical applications such as photothermal therapy (PTT) and photoacoustic imaging (PAI). In this work, we report mesoporous carbon nanospheres (Meso-CNs) with broadband and intense absorption in the UV-Vis-NIR region (300-1400 nm) and explore their potential as a multifunctional platform for ph...
متن کاملIn vivo evaluation of the combination effect of near- infrared laser and PLGA polymer containing 5- fluorouracil – loaded Nano-graphene oxide
Introduction: Recently, nanographene oxide (NGO) is proven to be as a great candidate for drug delivery, and phototherapies cancer. Photothermal sensitivity of NGO and its optical absorption in the NIR region lead to photothermal ablation of tumors. Nevertheless, the major drawback of GO is its toxicity in biological systems, To overcome this problem, nanoscale GO prepare with...
متن کاملFabrication of Graphene and AuNP Core Polyaniline Shell Nanocomposites as Multifunctional Theranostic Platforms for SERS Real-time Monitoring and Chemo-photothermal Therapy
In this work, novel theranostic platforms based on graphene oxide and AuNP core polyaniline shell (GO-Au@PANI) nanocomposites are fabricated for simultaneous SERS imaging and chemo-photothermal therapy. PANI, a new NIR photothermal therapy agent with strong NIR absorption, outstanding stability and low cytotoxicity is decorated on AuNPs by one-pot oxidative polymerization, then the Au@PANI core...
متن کاملMultifunctionalization of graphene and graphene oxide for controlled release and targeted delivery of anticancer drugs.
Among various nanomaterials, graphene and its derivatives have attracted considerable research interest in diverse application areas-including nanomedicine-because of their extraordinary physical, chemical, and optical properties. Intensive research is underway to investigate the biomedical application of graphene and graphene-based nanosystems as drug-delivery vehicles for cancer therapy, and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 6 14 شماره
صفحات -
تاریخ انتشار 2014